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Clustering high-dimensional mixed data
to uncover sub-phenotypes: joint analysis
of phenotypic and genotypic data
D. McParland,a C. M. Phillips,b,c,d L. Brennan,e H. M. Roched

and I. C. Gormleya,f*†

The LIPGENE-SU.VI.MAX study, like many others, recorded high-dimensional continuous phenotypic data
and categorical genotypic data. LIPGENE-SU.VI.MAX focuses on the need to account for both phenotypic and
genetic factors when studying the metabolic syndrome (MetS), a complex disorder that can lead to higher risk
of type 2 diabetes and cardiovascular disease. Interest lies in clustering the LIPGENE-SU.VI.MAX participants
into homogeneous groups or sub-phenotypes, by jointly considering their phenotypic and genotypic data, and in
determining which variables are discriminatory. A novel latent variable model that elegantly accommodates high
dimensional, mixed data is developed to cluster LIPGENE-SU.VI.MAX participants using a Bayesian finite mix-
ture model. A computationally efficient variable selection algorithm is incorporated, estimation is via a Gibbs
sampling algorithm and an approximate BIC-MCMC criterion is developed to select the optimal model. Two
clusters or sub-phenotypes (‘healthy’ and ‘at risk’) are uncovered. A small subset of variables is deemed discrimi-
natory, which notably includes phenotypic and genotypic variables, highlighting the need to jointly consider both
factors. Further, 7 years after the LIPGENE-SU.VI.MAX data were collected, participants underwent further
analysis to diagnose presence or absence of the MetS. The two uncovered sub-phenotypes strongly correspond to
the 7-year follow-up disease classification, highlighting the role of phenotypic and genotypic factors in the MetS
and emphasising the potential utility of the clustering approach in early screening. Additionally, the ability of the
proposed approach to define the uncertainty in sub-phenotype membership at the participant level is synonymous
with the concepts of precision medicine and nutrition. Copyright © 2017 John Wiley & Sons, Ltd.
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1. Introduction

Many large cohort-based studies collect high-dimensional continuous phenotypic and categorical geno-
typic data. The pan European LIPGENE-SU.VI.MAX (SUpplementation en VItamines et Minéraux
AntioXydants) study (www.ucd.ie/lipgene) is one such study that focuses on the need to account
for both phenotypic and genetic factors when studying the metabolic syndrome (MetS). The MetS is a
complex disorder that can lead to increased risk of developing type 2 diabetes and cardiovascular dis-
ease. The MetS is the term used to describe a clustering of several risk factors for cardiovascular disease,
namely obesity, abnormal blood lipids, insulin resistance and high blood pressure. Obesity is on the
rise globally and is considered to be a principle factor in the development of insulin resistance and the
MetS. The World Health Organisation estimates that the global prevalence of diabetes will almost dou-
ble from 171 million people in 2000 to 300 million people by the year 2030. Given the strain this will
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place on health and health systems all over the world, there is a need to gain greater understanding of
the MetS, thereby reducing its adverse health effects. In particular, the influence of both phenotypic and
genetic factors (and their interaction) on the MetS has recently come to the fore and is the focus of the
LIPGENE-SU.VI.MAX project. Valuable introductions and contributions to the LIPGENE-SU.VI.MAX
project include [1] and [2].

Under the LIPGENE-SU.VI.MAX study, high-dimensional data of mixed type were collected on a
group of participants. Continuous phenotypic variables (e.g. anthropometric and biochemical variables
such as waist circumference and plasma fatty acid levels) as well as categorical (binary and nominal)
genotypic single nucleotide-polymorphism (SNP) variables were recorded. Here, interest lies in clus-
tering the participants into homogeneous groups or sub-phenotypes, based on jointly modelling their
phenotypic and genotypic data, to uncover groups with similar phenotypic-genotypic profiles. In the
LIPGENE-SU.VI.MAX study, a large number of phenotypic and genotypic variables were recorded;
determining which variables discriminate between the resulting sub-phenotypes is therefore of interest.
Moreover, given the ethos of the LIPGENE-SU.VI.MAX study, whether the set of discriminatory vari-
ables includes both phenotypic and genotypic variables is of key interest. The developed methodology has
wide applicability beyond the LIPGENE-SU.VI.MAX study, in any setting seeking to uncover subgroups
in a cohort on which high-dimensional data of mixed type have been recorded.

Joint modelling approaches for data of mixed type are gaining attention in a range of statistical and
applied areas (see [3–7], among others, e.g.). In particular, [8] provides a comprehensive overview of
recent methodological and applied advances in the mixed data modelling area. Latent factor models
in particular have been successfully employed to jointly model mixed data; [9, 10] and [11] use factor
analytic models to analyse mixed data but not in a clustering context. In a similar vein to the approach
taken here, [12] consider a joint analysis of SNP and gene expression data in studies of complex diseases
such as asthma, but again not in the clustering context. The MetS has had recent exposure in the statistical
and computational literature – [13, 14] and [15] employ computational approaches to learn about the
disease, but mainly from a genetic point of view.

Latent variable-based clustering models have been successfully utilised to analyse high-dimensional
data. For example, [16] propose a mixture of factor analyser (MFA) model with a cluster-specific parsi-
monious covariance matrix. A suite of similar models with varying levels of parsimony is developed in
[17], and the MFA model is fitted in a Bayesian framework in [18]. Mixtures of structural equation mod-
els are developed in [19] and [20]. More recent developments in this area include those in [21, 22] and
[23], among others. However, while these models can efficiently model high-dimensional data, none of
them can cluster observed mixed data while also correctly handling each variable type.

Clustering data of mixed type is a challenging statistical problem. Early attempts to address the prob-
lem include the use of mixture models and location mixture models [24–28] as well as non-model-based
approaches [29, 30]; [31] clusters mixed categorical data using a latent class analysis approach. More
recently, [32–36] attempt to cluster mixed categorical data using latent variable models, and [37] cluster
multivariate ordinal data using a stochastic binary search algorithm. However, none of these can anal-
yse the specific combination of continuous and categorical variables without transforming the original
variables in some way or can feasibly accommodate high-dimensional data. An alternative model-based
approach to clustering mixed continuous and categorical data, clustMD, is introduced in [38]. While this
approach can explicitly model the inherent nature of continuous and categorical variables directly, it is
again computationally infeasible to use for high-dimensional data. In particular, clustMD cannot accom-
modate large numbers of nominal variables. Copula models for clustering mixed data [39, 40], while
showing distinct promise, also have limitations in high-dimensional settings.

The recent MFA for mixed data (MFA-MD) [41] is a hybrid of latent variable models for different data
types and provides the machinery for clustering mixed categorical data. Here, the MFA-MD model is
extended to facilitate clustering of high-dimensional, mixed continuous and categorical data. Specifically,
the joint model is composed of a factor analysis model for continuous data, an item response theory
(IRT) model for binary/ordinal data and a multinomial probit type model is used for nominal data. The
clustering machinery is provided by a finite mixture model.

The MFA-MD model is ideal for high-dimensional data settings as its factor analytic roots provide a
parsimonious covariance structure. However, large numbers of variables, as are present in the LIPGENE-
SU.VI.MAX data, hamper the substantive interpretability of the resulting clusters and place a heavy
computational burden on model fitting. Existing approaches to variable selection in a clustering context
include reversible jump Markov chain Monte Carlo methods [42]; approximate Bayes factors are used
in [43] and [44] to compare nested sets of variables; and [45] use penalised model-based clustering in the
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context of microarray data. Such methods would be computationally expensive given the latent variable
aspect of the MFA-MD model and given the large number of variables in LIPGENE-SU.VI.MAX data.
Therefore, here, an efficient novel online variable selection algorithm is incorporated when fitting the
extended MFA-MD model, improving substantive interpretability and computational costs. Inspired by
[46], variable selection is based on a within cluster variance to overall variance criterion, efficiently
leading to an interpretative clustering solution. Model fitting is performed in the Bayesian paradigm and
is achieved via a Gibbs sampling algorithm.

As in any clustering setting, uncovering the number of underlying clusters is a key, and often difficult,
question. In the context of the extended MFA-MD model, the dimension of the latent factor aspect of
the model also requires selection. Typical likelihood-based model selection criteria such as the Bayesian
information criterion (BIC) [47, 48] have been demonstrated to perform well in many general clustering
settings [49, 50], and marginal likelihood evaluation [51] or the use of over fitting mixture models have
gained warranted attention [52, 53] in the Bayesian literature. The likelihood function of the MFA-MD
model is intractable, however, rendering such approaches unusable. Therefore, here a novel approxima-
tion of the likelihood function is incorporated with the BIC-MCMC criterion [54], to efficiently select
the optimal model (i.e. the optimal number of clusters and the optimal number of latent factors) in the
context of the extended MFA-MD model.

The extended MFA-MD model, with variable selection, is used to cluster the LIPGENE-SU.VI.MAX
participants within a Bayesian framework. A range of models with varying numbers of clusters and
latent factor dimensions are fitted. The BIC-MCMC criterion suggests two clusters or sub-phenotypes of
participants, and a set of just 25 of the original 738 variables are deemed discriminatory. Examination of
the cluster-specific parameters reveals a ‘healthy’ sub-phenotype and an ‘at risk’ sub-phenotype. Notably,
the set of discriminatory variables contains both phenotypic and genotypic variables, highlighting the
need to jointly consider both data types. Some of the discriminatory variables are intuitive and have
been highlighted previously in the literature, but some of the discriminating SNPs in particular are novel
discoveries.

Seven years after the LIPGENE-SU.VI.MAX data analysed here were collected, each of the partici-
pants underwent further analysis to diagnose the presence or absence of the MetS, based on a criterion that
considers continuous phenotypic data only. The two clusters uncovered here from the initial LIPGENE-
SU.VI.MAX data strongly correspond to the 7-year follow-up disease classification, highlighting the role
of phenotypic and genetic factors in the MetS and, perhaps most importantly, the potential utility of the
clustering approach in early screening.

The model-based nature of the MFA-MD approach to clustering provides a global view of the group
structure in the set of LIPGENE-SU.VI.MAX participants. However, it additionally provides detailed
insight to sub-phenotype membership at the participant level, through quantification of the probability of
sub-phenotype membership for each participant. This ability to define the uncertainty of cluster member-
ship is an important development for the application of the metabotyping concept in precision medicine
and nutrition [55].

The remainder of the paper is organised into the following sections. Section 2 provides background to
the LIPGENE-SU.VI.MAX study and specific details on the data collected. Section 3 contains the three
modelling contributions of the paper: (i) details of the extended MFA-MD model for high-dimensional,
mixed continuous and categorical data; (ii) an outline of the variable selection and inference proce-
dure; and (iii) the development of the approximate BIC-MCMC model selection tool. Simulation studies,
diverted to the Supplementary Material for clarity, provide evidence to support the modelling and selec-
tion approaches taken. Section 4 discusses the results of fitting the extended MFA-MD model for
high-dimensional data to the LIPGENE-SU.VI.MAX data and considers model fit. The paper concludes
in Section 5 with a discussion and some future research directions.

2. The LIPGENE-SU.VI.MAX study

LIPGENE-SU.VI.MAX is a European Union Sixth Framework Integrated Programme entitled ‘Diet,
genomics and the MetS: an integrated nutrition, agro-food, social and economic analysis’ conducted by
25 research centres across Europe. The primary focus of LIPGENE-SU.VI.MAX is the interaction of
nutrients and genotype in the MetS. The MetS is the term used to describe a clustering of several risk
factors for cardiovascular disease, namely obesity, abnormal blood lipids (such as high blood cholesterol
and raised triglyceride levels), insulin resistance and high blood pressure (hypertension). One quarter of
the world’s adult population have the MetS, and increasing numbers of children and adolescents have it
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Table I. A person with three or more of the abnormalities listed below
is diagnosed as having the MetS.

Fasting glucose ⩾ 5.5 mmol l−1

concentration or treatment of previously diagnosed diabetes.
Serum TAG ⩾ 1.5 mmol l−1

concentration or treatment of previously diagnosed lipidemia.
Serum HDL-c < 1.04 mmol l−1 (Men)
concentration < 1.29 mmol l−1 (Women)
Blood pressure Systolic BP ⩾ 130 mm Hg, Diastolic BP ⩾ 85 mm Hg

or treatment of previously diagnosed hypertension.
Waist > 94 cm (Men), > 80 cm (Women)
Circumference

as the worldwide obesity epidemic accelerates. Table I details the MetS diagnosis criterion used here,
which relates to insulin resistance, dyslipidaemia, cholesterol, blood pressure and abdominal obesity.
Many closely related definitions of the MetS are also in use [56–58].

Under LIPGENE-SU.VI.MAX, data from a prospective population-based study were available [2,59].
Twenty-six continuous phenotypic measurements in addition to 801 categorical SNP variables were
recorded for each of 1754 participants. Examples of the continuous phenotypic measurements include
fasting glucose concentration, waist circumference and plasma fatty acid levels. An example of a categor-
ical genotypic variable is the nominal SNP rs512535 of the APOB gene, which has three genotypes,
AA, GG or AG, in the data. The 801 genotypic variables were selected using a candidate gene approach
based on pathways adversely affected in the MetS, and their relevant genes, as previously described in
[60, 61]. Biological variables were based on characteristics of the MetS [56–58], and plasma fatty acid
profiles were determined as biomarkers of habitual dietary intake as previously described [1].

Some data cleaning was conducted prior to analysis. Without loss of generality, the nominal SNP vari-
ables were coded with the convention 0 = dominant homozygous, 1 = recessive homozygous and 2 =
heterozygous. Any SNP variable with more than 100 missing values was removed, as were SNPs for
which all three genotypes were not observed in the data (most of which only had one observed geno-
type and therefore are non-discriminatory in a clustering setting). A total of 990 participants were then
removed as they still had at least one missing value across the remaining SNPs.

Some of the remaining SNPs had a small number (< 10% of the number of participants) of counts of
the recessive homozygous genotype. In such cases, for reasons of computational efficiency and stability,
the recessive homozygous and the heterozygous categories were merged, thus resulting in some SNPs
becoming binary variables. The merged category can be thought of as a ‘compound genotype’. For exam-
ple, the SNP rs17777371 of the ADD1 gene became a binary SNP with genotypes GG and CG∕CC in
the data. While losing some information, merging of at least one sparsely observed genotype with another
will not largely impact the findings in terms of uncovering clusters, or highlighting variables which dis-
criminate between clusters. A total of 371 SNPs were collapsed to binary variables, leaving 341 nominal
SNP variables. Finally, the SNP data were combined with the continuous phenotypic data, and partici-
pants that had any missing values for the continuous variables were removed. This left a final complete
data set of 505 participants and 738 variables (26 continuous variables, 371 binary SNPs and 341 nomi-
nal SNPs); this data set is analysed here. No genotypes were removed solely as a result of missing data
from other variables, and the continuous variables were standardised before any analysis was performed.
The full list of 738 variables analysed here is given in the Supplementary Material.

As stated, LIPGENE-SU.VI.MAX was a prospective study. Seven years after the data analysed here
were collected, new continuous phenotypic data were recorded on the LIPGENE-SU.VI.MAX partic-
ipants in order to diagnose the presence or absence of the MetS, according to the criterion detailed in
Table I. The correspondence between the clusters uncovered from the initial phenotypic and genotypic
data and the 7-year follow-up disease diagnosis is examined in Section 4.

3. Modelling and inference

A model-based approach is taken to cluster the LIPGENE-SU.VI.MAX participants, based on their initial
mixed continuous, binary and nominal data. The MFA model for mixed ordinal and nominal data, MFA-
MD, is introduced in [41]. Here, the MFA-MD model is extended to also allow for continuous data, a
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variable selection procedure is proposed, which facilitates feasible handling of high-dimensional data,
details of Bayesian inference are provided, and an approximate BIC-MCMC criterion for model selection
is developed.

3.1. Modelling the continuous phenotypic variables

A factor analysis model [62] is used to model the multivariate continuous phenotypic data. Specifically,
the observed J continuous phenotypic measurements, z

i
, on participant i are modelled as

z
i
= 𝜇 + Λ𝜃i + 𝜖i

where 𝜇 is a mean vector, Λ is a loadings matrix and 𝜃i is a participant-specific latent trait. The error
vector 𝜖i follows a zero mean multivariate Gaussian distribution with diagonal covariance matrix Ψ. The
dimension of the latent trait 𝜃i is Q where Q ≪ J. The factor analysis model offers parsimony as the
marginal covariance Σ = ΛΛT + Ψ requires estimation of only J(Q + 1) parameters.

3.2. Modelling the binary single nucleotide-polymorphism variables

As described in Section 2, some SNPs are treated as binary variables and are modelled using IRT mod-
els. Suppose that SNP rs17777371 is the jth variable (for j = 1,… , J). IRT models assume that, for
participant i, a latent Gaussian variable zij corresponds to each observed binary response yij. A Gaussian
link function is assumed, although other link functions, such as the logit, are detailed in the IRT litera-
ture [63, 64]. If zij < 0, then the binary response will be yij = 0 while if zij > 0 then yij = 1. Relating this
to SNP rs17777371, say, if zij < 0, then the observed genotype for participant i will be GG while if
zij > 0, then observed genotype will be CG∕CC.

In a standard IRT model, a factor analytic structure is then used to model the underlying latent variable
zij. It is assumed that the value of zij depends on a Q dimensional, participant-specific, latent trait 𝜃i (often
termed the ability parameter) and on some variable-specific parameters. Specifically, the underlying latent
variable zij for respondent i and variable j is assumed to be distributed as

zij|𝜃i ∼ N(𝜇j + 𝜆T
j 𝜃i, 1).

The parameters 𝜆j and 𝜇j are usually termed the item discrimination parameters and the negative item
difficulty parameter, respectively. As in [65], a probit link function is used so the conditional variance of
zij is 1. Under this model, the conditional probability that yij = 1 is

P(yij = 1|𝜇j, 𝜆j, 𝜃i) = Φ
(
𝜇j + 𝜆T

j 𝜃i

)
where Φ denotes the standard Gaussian cumulative distribution function.

3.3. Modelling nominal single nucleotide-polymorphism variables

Modeling nominal data is challenging, because of the fact that the set of possible responses is not ordered.
In the LIPGENE-SU.VI.MAX data, the possible responses for nominal SNPs is a set of three genotypes.
For example, the nominal SNP rs512535 of the APOB gene has three levels or genotypes, AA, GG or
AG, in the data. These response levels are coded as 0, 1 and 2, respectively, but no order is implied.

As detailed in Section 3.2, the IRT model for binary SNP variables posits a one-dimensional latent
variable for each observed binary SNP. In the factor analytic model for nominal SNP variables, a two-
dimensional latent vector is required for each observed nominal SNP. That is, the latent vector for
participant i corresponding to nominal SNP j is denoted z

ij
= (z1

ij, z
2
ij)

T . The observed nominal response
is then assumed to be a manifestation of the values of the elements of z

ij
relative to each other and to a

cut-off point, assumed to be 0. That is,

yij =
⎧⎪⎨⎪⎩

0 if max{z1
ij, z

2
ij} < 0

1 if z1
ij = max{z1

ij, z
2
ij} and z1

ij > 0

2 if z2
ij = max{z1

ij, z
2
ij} and z2

ij > 0.
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Similar to the IRT model, the latent vector z
ij

is modelled via a factor analytic model. The mean of
the conditional distribution of z

ij
depends on a respondent specific, Q-dimensional, latent trait, 𝜃i, and

item-specific parameters, that is,

z
ij
|𝜃i ∼ MVN2(𝜇j

+ Λj𝜃i, 𝐈)

where 𝐈 denotes the identity matrix. The loadings matrix Λj is a 2 × Q matrix, analogous to the item
discrimination parameter in the IRT model of Section 3.2; likewise, the mean 𝜇

j
is analogous to the item

difficulty parameter in the IRT model.
It should be noted that binary data could also be regarded as nominal. The model proposed here is

equivalent to the model proposed in Section 3.2 when the number of possible levels is two.

3.4. A factor analysis model for mixed continuous and categorical data

The factor analysis model for continuous phenotypic variables, the IRT model for binary SNPs and the
factor analysis model for nominal SNPs all have a common structure. These models are combined to
produce a unifying model for mixed continuous, binary and nominal data.

For each participant i, there are A = 26 observed continuous phenotypic variables, B = 371 latent
continuous variables corresponding to the binary SNP variables and C = 341 latent continuous vectors
corresponding to the nominal SNPs. These are collected together in a single D-dimensional vector z

i
where D = A+B+2C. That is, underlying participant i’s set of J = 738(= A+B+C) continuous, binary
and nominal variables lie

z
i
=
(

zi1,… , ziA, zi(A+1) … , zi(A+B), z
1
i(A+B+1), z

2
i(A+B+1) … , z1

iJ , z
2
iJ

)
.

The first A entries of this vector are the observed continuous measurements. The remaining entries are
latent data underlying the categorical responses. This vector is then modelled using a factor analytic
structure, that is,

z
i
|𝜃i ∼ MVND(𝜇 + Λ𝜃i,Ψ).

The D × Q dimensional matrix Λ is termed the loadings matrix and 𝜇 is the mean vector. The entries of
the diagonal covariance matrix Ψ are 1 along the diagonal, with the exception of the first A entries, which
correspond to the continuous variables.

This model provides a parsimonious factor analysis model for the high-dimensional latent vec-
tor z

i
, which underlies the observed mixed data. Marginally, the latent vector is distributed as z

i
∼

MVND(𝜇,ΛΛT + Ψ) resulting in a parsimonious covariance structure for z
i
.

3.5. A mixture of factor analysers model for mixed continuous and categorical data

To facilitate clustering, the hybrid model defined in Section 3.4 is placed within a mixture modeling
framework resulting in the extended MFA-MD. In the MFA-MD model, clustering occurs at the latent
variable level. That is, under the MFA-MD model, the distribution of the observed and latent data z

i
is

modelled as a mixture of G Gaussian densities, that is,

f (z
i
) =

G∑
g=1

𝜋gMVND

(
𝜇

g
, ΛgΛT

g + Ψ
)
.

The probability of belonging to cluster g is denoted by 𝜋g (
∑G

g=1 𝜋g = 1, 𝜋g > 0 ∀ g). The mean and
loadings are cluster-specific, while Ψ is equal across clusters for additional parsimony. Constraining the
loadings matrices to be equal across clusters, similar in ethos to the mixture of common factor analysers
[21, 22], would offer further parsimony but result in a subtly yet importantly different model.

As is standard in a model-based approach to clustering [49, 66–69], a latent indicator variable,
𝓁i = (𝓁i1,… ,𝓁iG), is introduced for each participant i. This binary vector indicates the cluster to which
participant i belongs, that is, lig = 1 if i belongs to cluster g; all other entries in the vector are 0.

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 4548–4569
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Under the MFA-MD model for mixed continuous and categorical data, the augmented likelihood
function for the N = 505 participants is

N∏
i=1

G∏
g=1

{
𝜋g

[
A∏

j=1

N(zij|�̃�T
gj�̃�i, 𝜓jj)

]

×

[
B∏

j=A+1

1∏
k=0

NT (zij|�̃�T
gj�̃�i, 1)

I{yij=k}

]

×

[
J∏

j=A+B+1

2∏
k=1

2∏
s=0

NT (zk
ij|�̃�kT

gj �̃�i, 1)
I(yij=s)

]}𝓁ig

(1)

where �̃�i = (1, 𝜃i1,… , 𝜃iq)T and Λ̃g is the matrix resulting from the combination of 𝜇
g

and Λg so that the

first column of Λ̃g is 𝜇
g
. In the binary part of the model, the Gaussian is truncated between −∞ and 0 if

yij = 0, and between 0 and ∞ otherwise. In the nominal part of the model, the Gaussian is also truncated,
depending on the observed yij, that is,

• If yij = 0, then max{z1
ij, z

2
ij} < 0.

• If yij = 1, then z1
ij = max{z1

ij, z
2
ij} and z1

ij > 0, z2
ij is restricted so that z2

ij < z1
ij.

• If yij = 2, then z2
ij = max{z1

ij, z
2
ij} and z2

ij > 0, z1
ij is restricted so that z1

ij < z2
ij.

The MFA-MD model proposed here is related to the MFA model [16, 68], which is appropriate when
the observed data are all continuous in nature. A Bayesian treatment of such a model is detailed in [18];
[17] detail a suite of parsimonious MFA models.

3.6. Variable selection

The LIPGENE-SU.VI.MAX data contain a large number of variables, particularly categorical variables.
A variable selection algorithm that removes variables, which have no clustering information, would
ease the computational burden of the model fitting process and also provide substantive interpretation
advantages by only retaining variables, which discriminate between clusters.

A simple but effective online variable selection procedure is incorporated here. For an informative or
discriminatory variable, the within cluster variance will be lower than the overall variance for that variable
in the data. Variables for which the within cluster and overall variances are similar do not discriminate
between clusters and are not interesting in a clustering context. Specifically, for each variable j, a variance
ratio VRj is computed where

VRj =
G∑

g=1

ng∑
i=1
∀i∈g

(zij − z̄gj)2∕
N∑

i=1

(zij − z̄j)2. (2)

The variance ratio is computed in an online manner in that at an iteration of the model fitting algorithm
ng denotes the number of participants currently classified as members of cluster g. In turn, the empirical
cluster mean for cluster g and variable j is denoted by z̄gj, while the overall mean for variable j is denoted
by z̄j.

Small values for VRj indicate that variable j discriminates between clusters while larger values indicate
that variable j takes similar values across all clusters and therefore contains no clustering information. A
user-specified threshold 𝜀 is set such that if VRj > 𝜀, variable j is dropped from the model and otherwise
it is retained. Selection of 𝜀 is application-specific, and its choice within the LIPGENE-SU.VI.MAX
analysis is discussed in Section 4. The choice of 𝜖 can be thought of as the choice of how many variables
the model will highlight as discriminatory; 𝜖 does not have an ‘optimal’ value as is typical of many
tuning parameters. Decreasing 𝜖 is equivalent to indicating that a more aggressive variable selection is
desirable. This variable selection method is shown to perform well in simulation studies, provided in the
Supplementary Material.
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3.7. Bayesian inference

The Bayesian paradigm is a natural framework for the estimation of latent variable models. Fitting the
proposed MFA-MD model in a Bayesian framework requires specification of prior distributions for all
parameters. Conjugate prior distributions are employed here. Specifically, �̃�gd ∼ MVN(Q+1)(𝜇

𝜆
,Σ𝜆), 𝜋 ∼

Dir(𝛼) and 𝜓jj ∼ G−1(𝛽1, 𝛽2). For participant i, it is assumed the latent trait 𝜃i follows a standard multivari-
ate Gaussian distribution while the latent indicator variable 𝓁i follows a Multinomial(1, 𝜋) distribution.
Further, conditional on membership of cluster g, the latent variable z

i
|lig = 1 ∼ MVND(𝜇g

,ΛgΛT
g +𝚿).

Combining these latent variable distributions and prior distributions with the augmented likelihood func-
tion specified in (1) results in the joint posterior distribution, from which samples of the model parameters
and latent variables are drawn using a Gibbs sampling MCMC scheme.

Full conditional distributions for the latent variables and model parameters are detailed below;
derivations and definitions of the distributional parameters are given in the Supplementary Material.

• Allocation vectors: 𝓁i|… ∼ Multinomial(1, p).
• Mixing proportions: 𝜋|… ∼ Dirichlet(𝛿

𝜋
).

• Latent traits: 𝜃i|… ∼ MVNQ

(
𝜇
𝜃
,Σ𝜃

)
.

• Item parameters: �̃�gd|… ∼ MVN(q+1)

(
𝜁
𝜆
,Ω𝜆

)
.

• Error variance parameters: 𝜓jj ∼ G−1(b1j, b2j).

The full conditional distribution for the latent data 𝐳 follows a truncated Gaussian distribution. The point
of truncation depends on the form of the corresponding variable, the observed response and the previously
sampled values of 𝐳 in the MCMC chain. The distributions are truncated to satisfy the conditions detailed
in Section 3.5. The latent variable zij is therefore updated as detailed below. Note that zij is not sampled
for j = 1,… ,A as in the case of the continuous variables yij = zij.

• If variable j is binary and yij = 0, then zij|… ∼ NT
(
�̃�

T
gj�̃�i, 1

)
where the distribution is truncated on

the interval (−∞, 0). The truncation interval is (0,∞) if yij = 1.

• If item j is nominal, then zk
ij|… ∼ NT

(
�̃�

kT

gj �̃�i, 1
)

where �̃�
k
gj is the row of Λ̃g corresponding to zk

ij and

the truncation intervals are defined as follows:

– if yij = 0, then zk
ij ∈ (−∞, 0) for k = 1, 2.

– if yij = k, for k = 1, 2 then:

1. zk
ij ∈ (𝜏,∞) where 𝜏 = max

(
0,max

l≠k
{zl

ij}
)

.

2. for l ≠ k then zl
ij ∈

(
−∞, zk

ij

)
.

Note that in the case of yij = k ≠ 0, the value zl
ij in the evaluation of 𝜏 in step 1 is the previously sampled

value in the MCMC chain. The value of zk
ij in step 2 is the value sampled in step 1.

The variable selection method presented in Section 3.6 is incorporated into the outlined Gibbs sampler,
and thus, the proposed MFA-MD model is fitted in three stages:

1. Burn in phase: In the first phase of the model fitting procedure, all variables are included and the
Gibbs sampling algorithm is run until convergence.

2. Variable selection phase: After the burn in phase, the algorithm moves into the variable selection
phase. Given the current clustering, the variance ratio VRj is computed for each variable j. All
variables for which VRj is greater than 𝜀 are dropped from the model. The algorithm is allowed to
burn in again before another variable selection step is performed, with a user-specified frequency.
The variable selection phase ends when no variables are removed from the model at a number of
successive variable selection steps.

3. Posterior sampling phase: During this phase, the Gibbs sampling algorithm proceeds, given the
discriminating variables.

Given its factor analytic roots, the MFA-MD model is not identifiable. Here, the loadings matrices are
unconstrained, and a Procrustean rotation is employed to solve the problem of their rotational invariance,
following ideas in [70, 71] and as detailed in [41]. Further, the well-known clustering label switching
problem is addressed using a loss function approach as in [72].
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3.8. Model selection via an approximate Bayesian information criterion Markov chain Monte Carlo
criterion

As with any clustering problem, the number G of clusters is unknown. Moreover, in the case of the
MFA-MD model, the dimension of the latent trait Q is also unknown. Under a model-based approach to
clustering, such as that taken here, the use of principled, statistical model selection tools to choose both
G and Q are available.

Formal likelihood-based criteria such as the BIC [47, 48] have been demonstrated to perform well
in many general clustering settings (e.g. [49, 50]) and also in clustering settings involving latent factor
models (e.g. [17]) and variable selection (e.g. [43,73]). There is also a rich Bayesian literature regarding
model evidence; model selection tools based on the marginal likelihood [74–76] are a natural approach
to general model selection within the Bayesian paradigm, with reversible jump MCMC methods [77]
and Markov birth-death methods [78] popular in the context of clustering. More recently, overfitting
approaches to model selection within clustering using Bayesian finite mixtures have gained warranted
attention [52, 53]. In the context of choosing Q in latent factor models, [79] provide a comprehensive
overview of Bayesian model assessment.

Such approaches naturally require evaluation of the joint likelihood of the observed continuous and cat-
egorical data Y , which for the MFA-MD model is intractable as it requires integrating a multidimensional
truncated Gaussian distribution, where truncation limits differ and are dependent across the dimensions.
These approaches also require the variables in the data to be the same when comparing models. Thus,
in order to select the optimal MFA-MD model, an approximation of the observed data likelihood is
constructed, which involves both variables retained and removed during the variable selection steps.

Recall that for participant i, their observed data consist of A continuous phenotypic variables, B binary
SNP variables and C nominal SNP variables collected in y

i
= (yi1,… , yiJ) where J = A+B+C. Denoting

the Ä continuous, B̈ binary and C̈ nominal variables with clustering information collectively as ÿ
i

and

the Ȧ continuous, Ḃ binary and Ċ nominal variables with no clustering information collectively by ẏ
i
, the

contribution to the likelihood function for participant i is approximated as

L̃i = f (ÿ
i
)f (ẏ

i
)

=
⎡⎢⎢⎢⎣

G∑
g=1

𝜋g

⎧⎪⎨⎪⎩MVNÄ(𝜇g,ΛgΛT
g + Ψ)

B̈+C̈∏
j=1

P(ÿij|i ∈ g)
⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦

×
⎡⎢⎢⎣MVNȦ(𝜇,ΛΛT + Ψ)

Ḃ+Ċ∏
j=1

P(ẏij)
⎤⎥⎥⎦ .

(3)

That is, independence is first assumed between the set of discriminating and the set of non-clustering
variables. Further, for the discriminating variables, conditional independence between the set of Ä con-
tinuous and the set of B̈ + C̈ categorical variables is assumed, and within the set of B̈ + C̈ categorical
variables. Additionally, independence between the set of continuous and the set of categorical variables
without clustering information is also assumed, and within the set of non-clustering categorical variables.

The multivariate Gaussian densities for the continuous variables in (3) are straight forward to evaluate;
a single Bayesian factor analysis model is fitted to the Ȧ removed variables. For the categorical variables
in (3), simple empirical probabilities are calculated from the observed data. For the B̈ + C̈ categorical
discriminating variables, these probabilities are the observed response probabilities, within each cluster.
For the Ḃ+Ċ non-clustering categorical variables, the probabilities are the observed response probabilities
among the N participants. Thus, a tractable approximation to the intractable likelihood is available and
can be used to compare models with varying values of G and Q, and with varying sets of discriminating
variables.

This approximated observed likelihood function is incorporated in the BIC-MCMC [54] criterion to
perform model selection with the MFA-MD model. Analogous to the traditional BIC, the BIC-MCMC
is derived from the largest observed log likelihood value generated across the MCMC draws, penalised
for lack of parsimony. In the context of the MFA-MD model, the approximate BIC-MCMC is defined as
follows:

BIC-MCMC = 2 × log L̃ − 𝜈 × log(N)
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where L̃ =
∏N

i=1 L̃i denotes the largest observed approximate likelihood value across the MCMC draws
and 𝜈 denotes the number of parameters in (3). Thus, for G = 1,… ,Gmax and Q = 1,… ,Qmax, the
approximate observed likelihood function L̃ is evaluated at each MCMC iteration and the largest value
used to compute the associated BIC-MCMC. The model with the largest BIC-MCMC is chosen as the
optimal model. The BIC-MCMC has been shown to perform well in the context of mixture models gener-
ally [54]; its performance in combination with the likelihood approximation within the MFA-MD context
is also shown to perform well in the simulation studies provided in the Supplementary Material.

4. Results

In order to cluster the set of LIPGENE-SU.VI.MAX participants, a number of MFA-MD models with
G = 1,… ,Gmax = 4 and Q = 1,… ,Qmax = 10 were fitted to the initial mixed phenotypic and genotypic
data. The maximum value considered for G was motivated by expert opinion on the expected structure of
the set of participants; the maximum value of Q considered was motivated by the observed performance
of the G = 1 model (Figure 1) and by run time considerations. The Jeffreys prior, Dirichlet(0.5,… , 0.5),
was specified for the mixing proportions 𝜋. An inverse gamma prior, with shape and scale parameters
of 7, was specified for the A diagonal elements of Ψ corresponding to continuous variables. The mode
of this relatively uninformative prior is just less than 1. A zero mean multivariate Gaussian prior was
specified for �̃�gd with Σ𝜆 = 5𝐈, which again is relatively uninformative. Prior sensitivity was assessed
by trialling different values of the hyperparameters. The results were relatively insensitive to changes in
the hyperparameters for 𝜋 and �̃�gd but somewhat sensitive to the hyper parameters for 𝜓jj. Sensitivity to
these inverse gamma hyperparameter values is a known problem for Bayesian inference of models of this
type [80].

For each of the forty models fitted, the burn in phase was run for 20,000 iterations, and in the
variable selection phase, the variance ratio criterion was computed every 1000 iterations. This period
between variable selection steps allowed the MCMC algorithm to ‘burn in’ again after variables have
been removed. In the LIPGENE-SU.VI.MAX setting, the variable selection threshold 𝜀 was fixed at 0.95
for continuous phenotypic variables and at 0.99 for categorical SNP variables. These thresholds are very
conservative so that only the most uninformative variables were removed. The thresholds could be low-
ered to facilitate a more aggressive variable selection procedure. The model fitting algorithm remained
in the variable selection phase until no variables were removed from the model for four successive vari-
able selection steps. When this occurred, the algorithm moved into the posterior sampling phase, which
was then run for 100,000 iterations, thinned every 100th iteration. Convergence of the Markov chains
was assessed using trace and auto-correlation plots. Computation times for these models are variable as
the speed will depend on how many variables are removed and on both the dimension of the latent trait
and the number of clusters fitted to the data. The G = 1, Q = 1 model took approximately 11 h while
the G = 4, Q = 10 model took approximately 25 h. It should be noted that no variable selection can be
applied if only one cluster is fitted to the data. The optimal model described in the following took less than
5 h to fit as only a small number of variables were deemed discriminatory. These timings were measured
by fitting the model using one processor of a quad core (2.83 GHz) desktop PC with 4GB of RAM.

The optimal MFA-MD model was selected using the approximate BIC-MCMC criterion developed
in Section 3.8. Figure 1 illustrates the approximate BIC-MCMC for each of the forty models fitted;
the optimal model is indicated to have G = 2 clusters and Q = 8 latent factors. During fitting of the
optimal G = 2,Q = 8 MFA-MD model, a large number of variables is dropped at the beginning of the
variable selection phase, but as the phase proceeds, the model converges on a relatively small number
of discriminatory variables. A plot showing the evolution of the number of variables retained during the
variable selection phase is given in the Supplementary Material. Only 25 of the original 738 variables
are retained under the G = 2,Q = 8 model. Of those retained, 12 are continuous phenotypic variables,
2 are binary SNP variables and 11 are nominal SNP variables. Notably, in the nearest competing model
G = 2,Q = 9, a total of 22 variables were retained, 16 of which were the same as those retained in the
optimal G = 2,Q = 8 model; this pattern was observed in general within models with the same number
of groups.

Alternative variable selection criteria to (2) are possible: the set of 40 models were also fitted using
a weighted version of VRj where each squared difference in the numerator in (2) is multiplied by the
posterior probability that observation i belongs to cluster g and a ‘fuzzy’ clustering version of the cluster-
specific means z̄gj is also used. This fuzzy version of VRj allows observations that are not assigned to a
cluster with a high degree of certainty to contribute to the within cluster variances of multiple clusters. In
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Figure 1. The approximate Bayesian information criterion (BIC)-MCMC for each of the mixture of factor analy-
sers for mixed data (MFA-MD) models fitted to the set of LIPGENE-SU.VI.MAX participants. The dashed grey
line indicates the largest approximate BIC-MCMC value achieved; the optimal model has two clusters and eight

latent dimensions.
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Figure 2. Box plots of the MCMC samples of mean parameters in each cluster, for the discriminating continuous
phenotypic variables. All variables were standardised prior to analysis. The original units for each variable are

detailed in the Supplementary Material.

the case of the LIPGENE-SU.VI.MAX study, it was found that this fuzzy version of VRj had no effect on
the optimal models: the same variables were chosen and the same clustering solutions were found, thus
giving the same interpretation.

Of particular note, in the context of the LIPGENE-SU.VI.MAX study, is that both phenotypic and
genotypic variables are deemed to be informative. The reduction from 738 to 25 variables aids the sub-
stantive interpretation of the model output significantly and ensures model fitting efficiency. Examination
of the cluster-specific parameters under the optimal model provides insight to the clustering structure in
the set of LIPGENE-SU.VI.MAX participants; posterior inferences from the optimal MFA-MD model
are discussed in what follows.

4.1. Examining the cluster-specific parameters for the set of discriminatory variables

The reduced cardinality of the set of variables facilitates interpretation of the substantive differences
between the resulting clusters or ‘sub-phenotypes’.

The means of the retained continuous phenotypic variables for each cluster are illustrated in Figure 2.
Examination of these posterior parameter estimates provides particular insight to the structure of the two
clusters. Cluster 1 appears to be a ‘healthy’ sub-phenotype in that the phenotypic variable means are
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lower in general in cluster 1 than in cluster 2. It is well known that lower values of such phenotypic
variables are typically associated with better health. For example, the mean levels of triglycerides, waist
circumference, body mass index and systolic and diastolic blood pressure variables are notably lower
in cluster 1 than cluster 2. The exception is Apo A-1, the major structural protein of the high-density
lipoprotein (HDL) particle, low levels of which are a recognised risk factor for cardiovascular disease
[81, 82]. Apo A-1 levels are usually low when HDL cholesterol levels are reduced; thus, it is intuitive
that higher Apo A-1 levels are reported in the healthy cluster.

Table II details the empirical posterior probability of each genotype across the 13 retained SNPs, con-
ditional on cluster membership. Clear differences in the distributions between clusters are visible. For
example, in both retained binary SNPs rs17777371 of the ADD1 gene and rs1050289 of the OLR1
gene participants in both clusters are most likely to take the dominant homozygous genotype. However,
for both SNPs, cluster 1 is more likely to take the compound recessive homozygous/heterozygous geno-
type (the second level) than cluster 2. In terms of retained nominal SNPs, the probability distributions
between clusters for thers4784744 SNP of the CETP gene and thers2235800 SNP of the SLC25A14
gene also show some disparities, for example. For the rs4784744 SNP of the CETP gene, participants
in cluster 1 are more likely to have the dominant homozygous genotype than those in cluster 2, with those
in cluster 2 more likely to have the heterozygous genotype. For the rs2235800 SNP of the SLC25A14
gene, 60% of participants assigned to cluster 2 have the dominant homozygous genotype compared with
38% of those in cluster 1. The probability distribution is much more evenly spread across the genotypes
for participants in cluster 1 than for those in cluster 2.

Table II. Empirical posterior probabilities of each retained SNP genotype conditional on cluster mem-
bership. Associated uncertainties are all less than 0.01.
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Table III. Characteristics of the set of 13 binary and nominal single nucleotide-polymorphism (SNP)
variables deemed to be discriminatory.(Source: NCBI SNP data base http://www.ncbi.nlm.nih.gov/SNP/).

Associated biological
Gene SNP SNP type Chromosome pathway

ADD1 rs17777371 Adducin 1 Flanking_3UTR Blood pressure
chromosome 4 regulation

APOB rs512535 Apolipoprotein B Intronic chromosome 2 Lipid metabolism
APOL1 rs136147 Apolipoprotein L1 Intronic chromosome 22 Lipid metabolism
CETP rs4784744 Cholesterol ester transfer protein Intronic chromosome 16 Lipid metabolism
FABP1 rs2970901 Fatty acid binding protein 1, Flanking_5UTR Lipid metabolism

liver chromosome 2
GYS1 rs2270938 Glycogen synthase 1 Intronic chromosome 19 Glucose homeostasis
INSIG1 rs9770068 Insulin-Induced Gene 1 Intronic chromosome 7 Lipid metabolism,

innate immunity.
LRP2 rs2544377 LDL receptor related protein 2 Intronic chromosome 2 Lipid metabolism
OLR1 rs1050289 Oxidized low density 3UTR chromosome 12 Lipid metabolism

lipoprotein (lectin-like)
receptor 1

SLC25A14 rs2235800 Solute Carrier Family 25 Intronic x chromosome Oxidative
(Mitochondrial Carrier, Brain), phosphorylation
Member 14 or UCP5

SLC27A6 rs185411 Solute Carrier Family 27 Intronic chromosome 5 Lipid metabolism
(Fatty acid transported), member 6

SLC6A14 rs2071877 Solute carrier family 6 Intronic x chromosome Amino acid
(amino acid transporter), transporter
member 14

THYN1 rs570113 Thymocyte nuclear protein 1 Intronic chromosome 11 Amino acid
metabolism

The 13 SNP variables deemed to be discriminatory are also listed in Table III, which provides details
on characteristics of the discriminating SNPs and the biological pathways to which they are associated.
Most of the SNPs deemed to be discriminatory are involved in lipid metabolism, glucose homeostasis
or blood pressure regulation. Associations between polymorphisms of a number of genes involved in
fatty acid and lipid metabolism, inflammation, appetite control and adiposity with risk of the MetS or its
features have previously been identified in the LIPGENE-SU.VI.MAX cohort [1, 83–91]; some of these
SNPs are also highlighted here, in addition to some novel discoveries.

Of particular interest in the current analysis is the APOB rs512535 SNP, which has previously been
reported to have association with MetS risk [85]. Apo B is the main apolipoprotein associated with low-
density lipoprotein and the triglyceride rich lipoproteins [92]. Other findings of note are rs9770068 of
the INSIG1 gene, which is involved in cholesterol metabolism [93], and rs4784744 of the CETP gene,
which is involved in mediating exchange of lipids between lipoproteins and reverse cholesterol transport
[94]; rs2544377 of the LRP2 gene and the rs1050289 SNP of the OLR1 gene, both of which are
involved in lipid homeostasis [95,96]; rs2970901 of the FABP1 gene and rs185411 of the SLC27A6
gene, both of which are involved in fatty acid metabolism [97,98]; and rs17777371 of the ADD1 gene,
which is involved in blood pressure regulation [99].

Examination of the posterior parameter estimates across all discriminating variables suggests that clus-
ter 1 could be termed a ‘healthy’ sub-phenotype and cluster 2 an ‘at risk’ sub-phenotype. Further, some
of the phenotypic and SNP variables deemed to be discriminatory appear intuitive, while others are
suggestive of potentially interesting relationships for further research.

4.2. Correspondence between sub-phenotype membership and the 7-year follow-up MetS diagnosis

As stated, the data analysed here are an initial set of measurements under the LIPGENE-SU.VI.MAX
study. At a 7-year follow-up, new continuous phenotypic data on each of the 505 participants were
recorded. Each participant was then diagnosed as having the MetS or not based on the criterion in Table I,
which considers continuous phenotypic data only. It is therefore of interest to compare the cluster or sub-
phenotype membership of each LIPGENE-SU.VI.MAX participant based on their initial phenotypic and
genotypic data to their subsequent MetS diagnosis, 7 years later.
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Table IV. Cross tabulation of sub-phenotype mem-
bership (based on fitting the MFA-MD model to
the initial phenotypic and genotypic data) and MetS
diagnosis (based on the diagnosis criterion in Table I
on 7-year follow-up phenotypic data only). The Rand
index is 0.73 (adjusted Rand index = 0.46).

Follow-up data

Healthy MetS

Initial data
Cluster 1 (‘Healthy’) 220 42
Cluster 2 (‘At risk’) 39 204

Table V. Cross tabulation of MetS diag-
noses from initial and follow-up data.
The Rand index is 0.69 (adjusted Rand
index is 0.38)

Follow-up data

Healthy MetS

Initial data
Healthy 194 31
MetS 65 215

The cluster or sub-phenotype membership for each participant is obtained by first computing the con-
ditional probability that participant i belongs to each cluster based on the MCMC samples, and a ‘hard’
clustering is then obtained by assigning each participant to the cluster for which they have largest mem-
bership probability. Table IV details the cross tabulation of the initial sub-phenotypes and the follow-up
MetS diagnosis. It can be seen that traits of the MetS are apparent in the initial data, as the cross-tabulation
shows good agreement, with a Rand index of 0.73 (and an adjusted Rand index of 0.46). Notably, Figure 1
suggests that there are five closely competing models to the optimal G = 2,Q = 8 model, that is, the
G = 2,Q = 5, 6, 7, 9, 10 models. Comparing the resulting clusterings from these models with the follow-
up MetS diagnosis results in Rand indices ranging from 0.71 to 0.74 and in adjusted Rand indices ranging
from 0.42 to 0.48, suggesting that the models deemed optimal by the BIC-MCMC criterion all indeed
have similar performance and perform well.

Of further interest is whether the level of correspondence between the sub-phenotypes and the follow-
up MetS diagnosis is stronger than that observed between the MetS diagnoses from both time points based
on the phenotypic data only. One of the abnormalities required for diagnosis involves HDL cholesterol
– HDL cholesterol data are not available in the initial measurements however. Therefore, the current
diagnosis criterion in Table I cannot be applied to the initial data. Hence, participants are diagnosed
as MetS cases if they satisfy two or more of the remaining four diagnostic conditions relating to waist
circumference, blood pressure, triacylglycerol (TAG) and glucose concentration. Table V details the cross
tabulation of the ‘initial diagnosis’ compared with the ‘follow-up diagnosis’ based on the phenotypic data
only. Notably, the follow-up diagnosis does not change here if it is based on two of the four available
variables rather than on the criterion outlined in Table I. Table V also suggests that the traits of the MetS
are apparent in the initial data, as the MetS diagnoses from the two time points agree well, with a Rand
index of 0.69 (adjusted Rand index of 0.38). However, the level of agreement is lower in Table V than
that observed in Table IV, highlighting the importance of utilising both phenotypic and genotypic factors,
and the potential utility of the clustering approach in early screening.

Further, to explore the influence of modelling each data type in its innate form, a k-means clustering
algorithm with k = 2 was applied to all the 738 variables, treating all the SNP variable codes as continuous
values. Comparing the resulting clustering with the follow-up MetS diagnosis gave a Rand index of 0.60
(adjusted Rand index = 0.21). Applying k-means clustering (again with k = 2) to the set of 25 variables
selected as discriminatory under the optimal G = 2,Q = 8 model gave a Rand index of 0.68 (adjusted
Rand index = 0.37) when compared with the follow-up MetS diagnosis. As noted, the MFA-MD model
achieved a Rand index of 0.73 (adjusted Rand index = 0.46) highlighting the benefit of modelling the
variables in their innate form.

Finally, the MFA-MD model outlined earlier was fitted to only the continuous phenotypic variables
from the initial LIPGENE-SU.VI.MAX data. The optimal model, according to the approximate BIC-
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MCMC, was the G = 2,Q = 7 model, which gave a Rand index of 0.50 (adjusted Rand of 0.005) with the
follow-up MetS diagnosis. This model under-performs when compared with analysing the phenotypic and
genetic data jointly, again highlighting the importance of considering phenotypic and genotypic factors
simultaneously with regard to early screening for the MetS.

4.3. Quantifying uncertainty in sub-phenotype membership at the participant level

One of the main advantages of a model-based approach to clustering is the inherent assessment of the
uncertainty about cluster membership [50,100]. In the LIPGENE-SU.VI.MAX context, the model-based
approach allows quantification of the probability of sub-phenotype membership for each participant.
As stated, the cluster membership for each participant is obtained by first computing the conditional
probability that participant i belongs to each cluster based on the MCMC samples, and a ‘hard’ clustering
is then obtained by assigning each participant to the cluster for which they have the largest membership
probability. The uncertainty with which participant i is assigned to its cluster may then be estimated by

Ui = min
g=1,…,G

{1 − 𝐏(cluster g|participant i)}.

If participant i is strongly associated with cluster g, then Ui will be close to zero.
Figure 3 illustrates the clustering uncertainties under the optimal MFA-MD model. Figure 3a illus-

trates the clustering uncertainty for each LIPGENE-SU.VI.MAX participant. The maximum uncertainty
observed is 0.496, associated with participant number 445. This participant is clustered with the ‘healthy’
sub-phenotype, but there is high uncertainty associated with this clustering. Examination of this par-
ticipant’s data provides insight to this high clustering uncertainty – participant 445 has much higher
systolic blood pressure and diastolic blood pressure and much lower Apo A-1 levels than the mean lev-
els in the ‘healthy’ sub-phenotype. Further, participant 445 differs from the modal genotypes observed
in the ‘healthy’ sub-phenotype for SNPs APOB (rs512535), FABP1 (rs2970901) and INSIG1
(rs9770068). Thus, while this participant is clustered with the ‘healthy’ sub-phenotype, they have large
probability of being ‘at risk’.

Thus, the model-based nature of the MFA-MD approach to clustering not only provides a global view
of the group structure in the LIPGENE-SU.VI.MAX participants but also provides detailed insight to
sub-phenotype membership at the participant level; the ability to define the uncertainty in cluster member-
ship is an important development for the application of the metabotyping concept in precision medicine
and nutrition [55]. Overall, the vast majority of LIPGENE-SU.VI.MAX participants have very small
clustering uncertainty, as illustrated by Figure 3b.

0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Participant number

C
lu

st
er

in
g 

U
nc

er
ta

in
ty

(a)
Clustering Uncertainty

F
re

qu
en

cy

0.0 0.1 0.2 0.3 0.4 0.5100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

(b)

Figure 3. (a) The participant-specific clustering uncertainties and (b) the histogram of the clustering uncertainties
across all participants, under the optimal mixture of factor analysers for mixed data (MFA-MD) model.
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Figure 4. Density estimates of the Bayesian latent residuals for the rs17777371 single nucleotide-
polymorphism (SNP) of the ADD1 gene for 50 randomly selected participants. The standard Gaussian density

curve is shown by the black dashed line.

4.4. Assessing model fit

In order to assess how well the selected MFA-MD model fits the LIPGENE-SU.VI.MAX data, Bayesian
residuals and Bayesian latent residuals are utilised [64, 101].

For continuous phenotypic variables, the Bayesian residual for participant i on variable j is

𝜖ij =
(

zij − �̃�
T
gj𝜃i

)
∕𝜓jj.

The continuous phenotypic data are observed, so this residual may be calculated explicitly by subtracting
�̃�

T
gj𝜃i at each MCMC iteration from zij and dividing this quantity by 𝜓jj from that iteration. For a well

fitting model, this residual follows a standard Gaussian distribution.
However, zij corresponding to a categorical SNP variable is not observed but sampled during the

MCMC scheme. A Bayesian latent residual for these variables may be defined as

𝜖ij = zij − �̃�
T
gj𝜃i.

The sampled values of zij, �̃�gj and 𝜃i are used to calculate this residual at each MCMC iteration. If the
model fits well, such residuals should follow a standard Gaussian distribution. For the nominal SNP
variables, this residual will be multivariate because two latent dimensions are required to model each
nominal SNP.

The Bayesian residuals and latent residuals follow their theoretical distribution reasonably well for the
optimal G = 2, Q = 8 MFA-MD model. As an example, Figure 4 illustrates kernel density estimates
of Bayesian latent residuals corresponding to the ADD1 (rs17777371) SNP for 50 randomly selected
participants. The densities are estimated based on the residuals calculated at each MCMC iteration.
Curves that do not follow a standard Gaussian distribution correspond to participants whose genotype was
unusual given the cluster to which they were assigned. Kernel density estimate plots for other Bayesian
residuals and Bayesian latent residuals are provided in the Supplementary Material.

5. Discussion

The primary focus of the pan European LIPGENE-SU.VI.MAX project is to study the interaction of nutri-
ents and genotype in the MetS. Data collected under LIPGENE-SU.VI.MAX are high dimensional and of
mixed type, and interest lies in exploring the set of LIPGENE-SU.VI.MAX participants to uncover sub-
groups with homogeneous phenotypic and genotypic profiles. Examining the link between the resulting
clusters and 7-year follow-up MetS diagnosis aids understanding of the role of both phenotypic and geno-
typic factors in the MetS and provides the opportunity to identify subjects at risk. A clustering method
that takes account of different data types and models each one appropriately is therefore necessary.

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 4548–4569
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While factor analytic methods for data of mixed type and latent factor-based clustering methods
have already been well developed, the proposed MFA-MD methodology contributes a number of novel
advances to the area:

• the MFA-MD model provides a single, unifying and elegant model for data, which notably includes
any combination of continuous, binary or nominal response variables.

• the MFA-MD approach models nominal response variables in their innate form, rather than requiring
a dummy variable representation as is typically necessary in other approaches to clustering nominal
response variables.

• the variable selection approach permits high-dimensional data to be feasibly and efficiently handled,
which is theoretically possible but practically challenging for some latent factor models.

• the model-based approach to clustering and the novel likelihood function approximation facilitates
the use of an objective model selection criterion to select the optimal number of clusters and factors
rather than relying on subjective heuristic tools.

The MFA-MD approach proposed here jointly and elegantly models continuous phenotypic, binary
SNP and nominal SNP data, while providing clustering facilities. The suitability of the MFA-MD model
for this task is due to its basis in and the relations between a factor analysis model for continuous data, IRT
for binary data and multinomial probit models for nominal data. Further, the parsimonious factor analy-
sis covariance structure is ideal for modelling such high-dimensional data. Most of the large number of
LIPGENE-SU.VI.MAX data set variables have little to offer in terms of clustering information; a simple
and efficient variable selection algorithm is intertwined with the MFA-MD fitting process, thereby high-
lighting variables that contribute clustering information. This greatly simplifies the task of interpreting
the clusters substantively.

A key aspect of the proposed approach to variable selection is that variables are removed from the
model online, thus dramatically reducing the computational burden of fitting the MFA-MD model to
high-dimensional data. Several penalisation-based variable selection approaches have previously been
proposed for latent factor clustering models, for example, in [102–104]; these only consider continu-
ous data in a maximum likelihood framework however. The fact that non-discriminating variables are
removed from the MFA-MD model rather than shrinking their associated parameters to zero (meaning all
variables are still included in the modelling procedure) ensures the dramatic increase in computational
efficiency of the proposed approach.

As with any clustering problem, of key interest is inferring the number of clusters present in the
set of LIPGENE-SU.VI.MAX participants. Standard information criteria approaches in a model-based
clustering setting involve the evaluation of the observed likelihood function and are not feasible under
the MFA-MD model – it employs latent variables and evaluation of the observed likelihood function
relies on intractable multidimensional integrals. Here, an approximation of the observed data likelihood
is constructed, and employed in the BIC-MCMC criterion to select both the number of clusters and
the dimension of the underlying latent factors in the MFA-MD model. Simulation studies suggest that
the approximate model selection criterion exhibits desirable performance, as does the variable selection
approach taken.

When applied to the initial mixed phenotypic and genotypic LIPGENE-SU.VI.MAX data, the MFA-
MD model uncovers two clusters or ‘sub-phenotypes’ of participants; exploration of the cluster-specific
parameters suggests that one cluster is a ‘healthy’ sub-phenotype and the other an ‘at risk’ sub-phenotype.
Both phenotypic and genotypic variables are identified as discriminatory; some are novel discoveries
and are indicative of further directions of research. Further, when comparing the resulting clusters with
the MetS diagnosis 7 years later, the proposed approach out-performs both the use of the standard MetS
diagnosis criterion and the result when clustering using the continuous phenotypic data only, thus empha-
sising the importance of jointly considering both phenotypic and genotypic profiles when screening for
MetS. The proposed MFA-MD approach to clustering not only provides a global view of the group struc-
ture in the set of LIPGENE-SU.VI.MAX participants but also provides detailed insight to sub-phenotype
membership at the participant level, synonymous with the concepts of precision medicine and nutrition.
The developed methodology has wide applicability beyond the LIPGENE-SU.VI.MAX study, in any set-
ting seeking to uncover subgroups in a cohort on which high-dimensional data of mixed type have been
recorded.

There are many potential areas of future research for the MFA-MD methodology proposed here.
Covariate data such as ethnicity and gender are potentially important when studying MetS and are cur-
rently involved in some of the varying MetS diagnosis criteria [56, 57]. Incorporating such covariate
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information in the MFA-MD model could provide understanding of cause-effect relationships in the clus-
tering context. Such information could be incorporated into the MFA-MD model in a mixture of experts
framework [105, 106].

Within the LIPGENE-SU.VI.MAX cohort, a large number of participants were removed from the
original data set prior to analysis due to the presence of missing data. To ensure generalisability of the
proposed approach, it would be advantageous to address such missingness in a more elegant manner. The
latent variable and Bayesian origins of the developed model and methodology would allow missing data
to be treated as latent variables that can be naturally imputed as part of the MCMC inferential sampling
scheme. Such missing data would be required to be missing at random, which was deemed not to be the
case in the LIPGENE-SU.VI.MAX cohort.

The approximate model selection criterion developed demonstrated good performance but can be com-
putationally expensive to compute and other approaches have potential merit. Non-parametric approaches
to clustering such as the Dirichlet process (or infinite) mixture model [107] provide an alternative to the
finite mixture approach taken here and do not require a model selection tool to choose G. However, in
the case of MFA-MD, the value of Q still requires inference; considering an infinite factor model [108]
would again avoid the need for a model selection criterion for Q and allow the latent factor dimension
to vary across clusters, in a similar manner to that considered in [109]. Such approaches may provide
computationally cheaper ways to find the optimal values of G and Q without requiring an expensive grid
search.

Considering more parsimonious versions of the model [17] would increase modelling flexibility, as
would extending the model to include other data types, such as count data, for example. Including such
further complexity in the MFA-MD methodology would serve to increase the computational cost of model
fitting which, even with the efficiency inducing variable selection procedure, is still somewhat onerous.
A variational Bayes approach to estimation of the MFA-MD model [110] may have potential in terms
of feasibly implementing the model at increased scale and complexity and may also aid some of the
intractable likelihood difficulties. Further, exploring other latent variable representations, for nominal
variables in particular, may be fruitful in terms of achieving parsimony and computational efficiency.
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